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STABILIZATION OF THE STATIONARY MOTIONS OF NON-HOLONOMIC MECHANICAL SYSTEMS* 

B. ATAZHANOV and E.M. KRASINSKAYA 

The possible stabilization of the unstable stationary motions of a non- 

holonomic system is studied from the standpoint of general control theory 

/l, 2/. As distinct from the case previously considered /3/, when forces 

of a certain structure are applied with respect to both positional and 

cyclical coordinates, the stabilization is obtained here by applying 

control forces only with respect to the cyclical coordinates /4/; the 

control forces may be applied with respect to some or all of the cyclical 

coordinates, and depend on the positional coordinates, the velocities, 

and the corresponding cyclical momenta. It is shown that, just as in 

the case of holonomic systems 15, 6/, depending on the control properties 

of the corresponding linear subsystem, the stationary motions, whether 

stable or unstable, can be stabilized, up to asymptotic stability with 

respect to all the phase variables, or asymptotic stability with respect 

to some of the phase variables and stability with respect to the remaining 

variables. The type of stabilization with respect to the given phase 

variables depends on the Lyapunov transformations which are needed in 

order to reduce the critical cases obtained to singular cases /7, 8,'. 

1. Let the non-holonomic constraints on a system under the action of potential forces be 

qlr' = B,, (4) q,,' (1.1) 

Here and henceforth, 

p = 1. 3, . . .) m; x = 1, 2,..., m - 1 

q=m- I+ I,..., m; a, b, Y = m + 1, m + 2, . ., li 

i, j = m + k + 1, m + k + 2. . . , n; a. p, s = rn + 1, m -L 

2 (. . .,n 

Summation is performed with respect to twice repeated indices. 

As in /3/, we shall describe the state of the system by the Routh variables Qll* Q* 7 Pi7 Qi 9 

9a, Pa. we first consider the case when there is a manifold of stationary motions whose 

dimensionality is not less than the sum of the number of cyclical coordinates and the number 

of non-holonomic constraints of a general type /9/: let the latter number be independent of 

the cyclical velocities, i.e., Bllaz 0, and we have the conditions 

(1.2) 

Here, T, is the kinetic energy of the system when the constraints (1.1) are ignored, n(Q) 

is the potential energy, R is Routh's function and ~pp'&so are the coefficients of the terms 
of non-holonomicity in Voronets's equations. 

The equations of the perturbed motion in the neighbourhood of stationary motion 

4;1 = QllO? Q1 = qio, qi' = 0, Pa = Ca = COllSt (1.3) 

have the form /3/ 

s' = Bx' + 01 (r, s, z'), y' = Nx’ + O’z (x, s, y, x-j 

Ax” + ry’ + (0, + G,) z’ + Mx + Hy + Es = 0, (I, S, y, x’) 

where y,x,s are respectively the disturbance vectors of the cyclical momenta Pa 1 the pos- 
itional coordinates qi and the coordinates q,,, whose velocities are independent by virtue of 
(1.1). The coefficients of these equations are constant matrices, expressible.in a well-known 
way /3/ in terms of the coefficients of the constraints, the Routh function, and the terms of 

non-holonomicity for the stationary motion (1.3); .a,, OP, 0, are non-linear vector functions 

*Prikl.Matem.Nekhan.,52,6,902-908,1988 
705 



whose expansions start with a second order term, while 

CD, (X, S. 0) = CD* (X, s. y, 0) as 0 

Making the change of variables /lo/ z = s - [lx in these equations, we reduce them to the 
normal form 

2' = a'1 (.r, 2 -t BX, XI), y' = NX, I- 0, (X, z + Bs. y, X1) (1.4) 
2’ == XI, sl’ = --A_’ cry. + (D, ‘- G,) x1 + (Jr + EB) I + 

fly t- Ez - ‘n3 (JT, z + Bz, y, xl) 

2. We will consider the stabilization of stationary motions by applying control signals 

only with respect to the cyclical coordinates. We first consider the case when the control 

forces are applied with respect to all the cyclical coordinates and depend on the positional 

coordinates, the velocities, and all the cyclical momenta. We consider the linear subsystem 

y' = Nx,, ,X.' = X 1, X 1* = ---A-' [ry' f (Or + G,) Xt + (nf + EB) X -c ffyl (2.1) 

We apply to this subsystem the vector of control forces v(dim v = k) with respect to 

the cyclical coordinates and stabilize the stationary motion y = X = X1 = 0 up to asymptotic 

stability with respect to the variables y,X,X,. We take as the performance criterion of the 

transient the functional 

1 W(X, Xi, y* r)dt (2.") 

where w is the sum of the positive definite quadratic forms with respect to the variables 

Y%, Xir Xii and the control u,. 

Put 

0’ == {I. 0, -A-r} (2.3) 

I 
0 0 s 1 

pz (I 0 I 

- .4-'H - A-l@! + EB) - A-‘(I’,V + D, + G,) 1, 

where I is the identity matrix and 0 the zero matrix. 

By control theory for linear systems /l, 2/, if the rank of the matrix 

IV = {Q, PQ, . . ., w~-~+:-* Q} (2.4) 

is equal to the order of system (2.1), the problem of optimal stabilization will have a sol- 

ution. The coefficients of the linear control are then 

u = L,s + L,X, + L,y (2.5) 

and can be uniquely determined from the chosen optimal Lyapunov quadratic function 1' /2/. 

The usual algebraic equations are obtained for the coefficients of v". In certain cases /2, 5/, 

the coefficients of 1- and of the control (2.5) can be found analytically. 
If the linear control (2.5) can thus be found, then all the roots of the characteristic 

equation 

A1 (A) = 

II - L, 

i 

1 i. 
det 

- ,F(.lf - RH 

+ r/d,) 

for the controlled subsystem (2.1) will have negative real parts. 

I 0 

-it lh-A-‘(TN+TL,+ -d-‘(H+I’L,) 

+ D, + G,) 

Let us examine the stability of the zero solution of the complete system of Eqs.Cl.4) 

under the action of the controls (2.5) which solve the optimal stabilization problem for the 

zero solution of the controlled subsystem (2.1): 

z' = @I (X, .z + BX, Xl), y' = (N + L,) X1 + L,X + La + (2.6) 

@, (I, z + HX. y, Xl), 5' = X1 

5 

1 

’ - -_A-’ [(riv -c I’L, + D, + G,) xl + (M + EB + TL,) .I. + 
TfI + rL,) y + Ez - QD, + Ix’,1 

The characteristic equation of the first approximation of this system 

h’A, (Is) = 0 

has 1 zero roots, where 1 is the number of constraints of general type, while the remaining 

roots lie in the left-hand half-plane. 
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We will now show that this critical case can be reduced to a singular case /7, 8/. 
Since J,(O)+ 0, there exist implicit functions Ul (z) 1 4 (z), given by the system of 

equations 

L,u, (z) + L,u, (z) = 0 (2.7) 

(M + EB + rL,)u, (z) + (H + rL,)u, (z) 1 Ez - OS* = 0. 

(@s* = 0, (u, (4, z + Bu, (4, uz (4, 0)) 

We make the Lyapunov change of variables /7/ 

x= 5fu,(z),Y--~1+~2(Z) 

System (2.6) then becomes 

z’ = 0 1, rl’ = (N + L.2) Xl + L,5 -+ L,I) t @2” 
5’ = x1 - (au,/az) cbl 

q' = -A-' [(I'N + L5, + D, -t G,)x, + (iI1 + EB + 

r4) 5 + (H + rL,) q - @;I 

(0; = a~,, - OS* - m,, a; = m2 - (au,,‘az) q) 

(2.8) 

(2.9) 

where CD,, Q, vanish for 6 = q =x1 = 0. 
In short, the system of equations of the disturbed motion has been reduced to the form 

(2.9), for whichtheconditions of the Lyapunov-Malkin theorem /7, 8/ on the singular case of 
several zero roots, are satisfied. By this theorem, the stationary motion (1.3) is asym- 
ptotically stable with respect to the variables 5, 11, xl, and stable with respect to z. We 

thus have the following theorem. 
Theorem 1. Iftherankofthematrix Wof (2.4) is 2(n - m) -k, then the stationarymotion (1.3) 

canbe stabilizedbyapplying thecontrol forces (2.5) withrespecttothe cyclicalcoordinatesonly. 
Inthis case, takingintoaccountthe substitutions (2.8) weobtainasymptoticstabilitywith 

respectto thepositionvelocities qi' andstabilitywithrespecttothecoordinates 41% $1 and 
cyclic momenta Pa. 

Notes. lo. Theoremlalso holds if, for stabilization of the zero solution of the complete 
system, we take the control vector 

" = L,r i L&f &Y + @'r (x3 31, U) 

where Q is a non-linear vector function whose expansion starts with second-order terms in 
5,x1, Y. In this case,wemustaddtoEqs.(2.7) the respective terms Dd* and PDa*. similar to cDD,*. 

2'. If the last equation of system (2.6) contains no unattached critical variables z, 
we obtain asymptotic stability with respect to the variables Q,, II,',~~, and stability with 
respect to the coordinates q,,. For, in this case there is no need to make the change of 
variables (2.8), and system (2.6) at once satisfies the conditions of the Lyapunov-Malkin 
theorem about the singular case. 

3'. Given our structure of the control (2.5), as distinct from /3/, we can if necessary 
compensate the dissipative forces which act on the cyclical coordinates and depend on the 
positional and cyclical velocities. In this case it suffices to take account of the respect- 
ive terms L,'r,+ L1'y + 0" in the control, where Q,, is a constant matrix. 

3. We now consider the stabilization of stationary motions by applying controls with 
respect to only some of the cyclical variables. 

Let Y, (dim Y, = k, < k) be the part of vector y with respect to which no control is 
applied, while Y,(dim Y, = k -kk,) is the part with respecttowhich control v2 is applied. 
We then have to make the change of variables 10, = Y,-Nz,, and the critical variables will 
be z and 1~~. The linear controlled subsystem is 

Y 2' = Nrr, + VI, x' = 5r (3.1) 

XI' = --A-' r(rlv + D, + G,) z1 + ru, + (.if + EB + 

HA',) 5 -t H&,1 
If the rank of the matrix 

1y = (0, PQ, . . .( ps(n-m)-P-k,-lQ} (3.2) 

(where Q and P have the form (2.3) when II is replaced by H,,N by N2, and M by .V f HIN,) 
is equal to 2(n -m)- k-kk,, then the control (2.5) sol,ves the problem of optimal stabiliz- 
ation for subsystem (3.1). 

The characteristic equation of the first approximation ofthecomplete system has 1 f k* 
zero roots. Then, in the same way as above, we can use the Lyapunov replacement 

z = t + % (2, WI), Y, = tl + Us (2, u)J 

to reduce thesystemof complete equations of the perturbed motion to the singular case of 
If k, zero roots. 



We have thus proved: 

Theorem 2. If the rank of matrix W of (3.2) is equal to the order of the linear C0I1- 
trolled subsystem (3.1), then the stationary motion (1.3) can be stabilized by applying the 

control forces (2.5) with respect to the part of the cyclical coordinates correspondinqtothe 

momenta y,. 

4. Now let the equations of the constraints depend on the cyclical velocities, i.e., 

H,,, # 0, while in the Routh variables the equations of the constraints of general type have 

the form /l, 2/ 

4s'= (B,, - &VLzi) 4i' t &,&t,@~~ 

Let conditions (1.2) and the following conditions for the existence of stationary motions 

of type (1.3) be satisfied: 
(Bl&$)" C(i =r 0 

In this case, the equations of the first approximation of the equations of the perturbed 

motion, both for the constraints of general type, and for the cyclical momenta, willinqeneral 

contain all the variables I, I', s, y. 
For simplicity, we consider the case /12/ when 

G.aR, (Cl. p)/@, = 0 
where 

R" (q, P) = --II (rl) - 'i&&JaPp 
is the part of the Routh function which does not contain positional velocities. In this case 

the equations of the perturbed motion are /12/ 

where the coefficients are expressible in the usual way /ll, 12/ in terms of the coefficients 

of the constraints, the Routh function, and the terms of non-holonomicity. 

Assume that T = (&,,&p)# 0. We apply with respect to the cyclical coordinates the 

control force vector 

u = L,s + L,s, f L,y + L,s + a, (CC, J;‘,. y, s) (4.") 

and consider the matrix 

W = {Q1, P,Q,, . . ., P;“‘-‘+k+‘-‘Q1} 
Q' = (0, I, 0, -A-lr} 

0 T K B 

0 0 0 0 
PI= lj 0 0 ll 

- A-‘E - A-‘H - A-‘M - A-‘(D + G + TN) 

(43) 

The theorem on stabilization with respect to the first approximation /2/ then leads to: 

Theorem 3. If the rank of the matrix W of (4.2) is equal to the order of system (4.1), 

i.e., is 2(n- m)-k+ 1, then the stationary motion (1.3) can be stabilized to a first 

approximation by applying the control forces (4.2) with respect to the cyclical coordinates 

only. The undisturbed motion is then asymptotically stable with respect to the positional 

coordinates %l* Q!? the velocities qi’, and the cyclical momenta pa ,with any non-linear terms. 

Note. The controls obtained by Theorems 1 and 2 will not in general be optimal for the 

system of Eqs.(1.4) in the case of our functional which has a quadratic integrand. These 

controls will only solve the stabilization problem for system (1.4). However, by starting 

the optimal stabilization problem for the linear controlled subsystem, we can determine whether 

the stabilization problem is solvable for the complete system. We then find at the same time 

the structure of the control forces. 
The controls obtained in accordance with Theorem 3 will also be optimal for the complete 

system of equations if we take as the functional 

where o is the sum of the positive definite quadratic forms with respect to the variables 

z, .I~. y. s , and the control u 



where V is the optimal Lyapunov function, which is found by solving the problem of optimal 

stabilization of the first approximation of system (4.1) for the quadratic functional (2.2). 

Example. The unstable rotation of a disc on a rough horizontal plane /13/ has been 

stabilized by applying with respect to the cyclical coordinate cp a moment which depends on 

the positional velocity 0'/3/. It is then necessary to apply a dissipative force with 

respect to the positional coordinate. 
We now consider the possible stabilization of the unstable stationary motions of the 

disc, regardless of whether dissipative forces acting on the positional coordinate are present. 

The Lagrange function L, formed in the context of non-holonomic constraints .z' = arp' cos 9, 

y' = am'sin*, is given by 

L = I/? [AV -t (C i_ ma2) (cp' -I@' sin O)* f Alp.2 cm* El] - mga co3 0, 

A" = A f ma2 

Here, m is the mass of the disc, a is its radius, and A and C are the equatorial and 

polar moments of inertia /13/. 

We writetheequations of the perturbed motion /3/ in the linear approximation in the 

neighbourhood of a stationary motion 0 = 9,,,p1 = c1 = const, p, = c, = const. 

Putting 0 = 0, + q, p, = c1 + yl. pa = c2 + y2; we obtain 

y; = X11)'. y; = N,q' 

A"q" + hlj' + MI + H,y, - H2yl = 0 

where the constant coefficients depend on the choice of stationary motion /3/. 

We apply to the disc, with respect to the angle of proper rotation and the precession, 

the controls of and v,, see (2.5), which depend linearly on the variables 21. ~a, rl. 11' (la = y6 - N6, 
6 = 1, 2). The matrices Q and P will then be 

We first consider circular motion, for which c,, c,,O,. retain constant values. The rank 

of the matrix W is then equal to four, regardless of whether dissipation is present (h =+ 0) 
or not (h = 0). Consequently, the unstable circular motion can be stabilized by applying 

simultaneously with respect to the cyclical coordinates 'p and $ two linear control moments 

v1 and ,v*, which depend on the variable ~1. zyr '1, q'. The coefficients of these controls must 

satisfy the conditions that are implied by the Hurwitz criterion, whereby the roots of the 

characteristic equation are negative. It can be shown that spinning (&I1 = CI = 0, p* = c1 = const, 

e0 =O) and wobbling on a straight line (pI= cl= const,p%=c,= O,&,=O) can similarly be stabil- 

ized by two controls v1 and V( if .MzO. With this stabilization, the circular motion, spin- 

ning, and wobbling on a straight line, will be asymptotically stable with respect to 8,8', p1,p2. 

We shall now stabilize the circular motion by a control moment vI= /,I) + I,q" l,tJ. applied 

with respect to the cyclical coordinate $ only. In this case, z1 will be a critical variable. 
Taking the subsystem consisting of the three remaining equations, we see that the rank W= 3 

whether dissipation is present (h#O) or not (h = 0). 
On considering the complete system of equations, we see by Theorem 2 that the circular 

motion is asymptotically stable with respect to H' and stable with respect to A.p,.r,. 
Similarly, the circular motion can be stabilized by the control moment 1', = I,Il f 1,))' - Q,* 

applied with respect to the cyclical coordinate 9. 

On applying the control moment t', with respect to q, the spinning can be stabilized 

regardless of whether or not dissipation is present. We then have asymptotic stability with 

respect to p,, e,w, and stability with respect to pl. since in this case H, -= (1 and there are 
no unattached critical variables yl. For comparison with /3/, we write the conditions defin- 
ing the coefficients of the control moment: 

2, < o, 1, > --1, > (AR' 7 wn"Q - mga)lQ 

If, in the case of spinning, we apply the control moment with respect to the cyclical 
coordinate $, the system is uncontrolled to a first approximation. 

Finally, take the stabilization of wobble along a straight line by means of one control. 
By adding a control cg with respect to the cyclical coordinate 9, we find that the subsystem 
of the last three equations is controlled; for the complete system of equations we have 
asymptotic stability with respect to P?. 0, H', and stability with respect to 'pl. since the 
complete system of equations contains no unattached critical variables yl. If the control is 

applied with respect to the cyclical coordinate 'p. the system is uncontrolled to a first 
approximation. 
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ON THE RELATIVE EQUILIBRIA OF A SATELLITE-GYROSTAT, 
THEIR BRANCHINGS AND STABILITY* 

V.N. RUBANOVSKII 

The set of relative equilibria of a satellite-gyrostat in a Newtonian 

gravitational fieldis studied. The simple geometrical form of this set 

is described. The branching and stability of the equilibria of a sym- 

metric gyrostat are considered. The results are represented by bifur- 

cation diagrams, on which the degree of stability of the equilibria is 
distributed in accordance with a law whereby the stability changes at a 

fixed value of the gyrostatic moment. 

1. In some problems of gyrostat dynamics in a Newtonian gravitational field /l-6/, the 

determination of the positions of relative equilibrium of the gyrostat amounts to finding the 

stationary values of the function 

W = ?& 9 (3hAly,’ - A#? - 2kjpj) 
‘jz 

under the conditions 
nv = y12 + yz2 + ys2 - 1 = 0, np = p," + pl' T B38 - 1 = 0 (1.1) 

nvfi = Ylel + ylBz + y&J3 - 0 
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